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Linearization of the True Range Equation. Using the notation defined in the descrip-
tion of the GPS Computer Project we have that S` = (x`, y`, z`)

T = position of `th Satellite,
` = 1, · · · 4; S = (x, y, z)T = position of receiver (the Station to be tracked); R` = true
range to the receiver located at S from the satellite located at S`; and ∆S` = S − S` =
satellite-to-receiver distance vector. For a fixed satellite location, S`, the true range, R`, is
a nonlinear function of the receiver location, S, and is given by,

R` (S) = ‖S − S` ‖ = ‖∆S` ‖ =
(
∆ST` ∆S`

) 1
2 , ` = 1, · · · , 4 . (1)

Note that all points S for which R` (S) = r lie on a sphere of radius r centered at the
satellite location S`.

The gradient of R` (S), ∇SR` (S), is the direction of steepest increase of R` (S). It
corresponds to the direction in space for which a unit change in the position S results in the
largest increase in the value of R` (S). Some thought provides the insight that it must be
the case that

∇SR` (S) = r` (S) ,
∆S`
R` (S)

, (2)
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where r` (S) is the unit vector which points from the satellite location S` to the point S.
This can be shown rigorously from the fact that

∇SR` (S) =

(
∂R` (S)

∂S

)T
where (utilizing vector derivative identities)

∂R` (S)

∂S
=

∂
(
∆ST` ∆S`

) 1
2

∂S

=
∂
(
∆ST` ∆S`

) 1
2

∂∆S`
· ∂∆S`
∂S

=
1

2

(
∆ST` ∆S`

)− 1
2 · ∂∆ST` ∆S`

∂∆S`
· I

=
1

2R` (S)
· 2 ∆ST`

=
∆ST`
R` (S)

= rT` (S) .

The fact that the linearization of R` (S) is given by

∂R` (S)

∂S
= rT` (S) (3)

is an important result which will be used below.

The Pseudorange Equation. The pseudorange measurement for satellite ` is denoted
by y` , and modelled as

y` = R` (S) + b+ ν` , (4)

where the random noise term ν` is i.i.d. with p.d.f. N(0, σ2) for each ` = 1, 2, 3, 4. It is also
assumed that ν` is independent of νµ for ` 6= µ. The (constant) systematic clock bias error b
is caused by an inaccurate clock in the GPS receiver.

The same number of range measurements, k = 1, · · · ,m, are taken to each satellite ` ,

y` [k] = R`(S) + b+ ν` [k] , k = 1, · · · ,m ; ` = 1, 2, 3, 4 , (5)

which we write as a collection of vector–measurement equations,

y[k] = R(S) + b e + ν[k] , k = 1, · · · ,m , (6)

where

y[k] =

y1[k]
...

y4[k]

 , R(S) =

R1(S)
...

R4(S)

 , e =

1
...
1

 , and ν[k] =

ν1[k]
...

ν4[k]

 . (7)
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Now, let us rewrite (6) as

y[k] = h(X) + ν[k] , k = 1, · · · ,m , (8)

where

X =

(
S
b

)
∈ R4 and h(X) = R(S) + e b ∈ R4 . (9)

Note that for each measurement k, the expression shown in (8) contains four equations and
four unknowns. The vector–measurement y[k] ∈ R4 is comprised of range measurements
made to all four satellites at the same time k.

The Least–Squares Parameter Estimation Problem. For the k–th measurement in
(8) define the associated single–measurement least–squares loss function,

`k(X) =
1

2
‖y[k]− h(X)‖2 . (10)

Because the noise vector ν[k] has covariance matrix Σ = σ2I4×4, minimizing the loss function
(10) is equivalent to minimizing the weighted least–squares loss function with weighting
matrix Σ−1,

`k(X) =
σ2

2
‖y[k]− h(X)‖2

Σ−1 .

With ν[k] ∼ N(0,Σ), this means that the estimate for X obtained by minimizing `k(X)
yields the maximum likelihood extimate (MLE) of X given the single vector–measurement
y[k].

Now define the average least–squares loss function,

¯̀(X) = 〈`k(X)〉m =
1

m

m∑
k=1

`k(X) . (11)

It is straightforward to show that the average loss function (11) is also equal to the complete–
data least–squares loss function

¯̀(X) =
1

2m

∥∥∥∥∥∥∥
 y[1]

...
y[m]

−
h(X)

...
h(X)


∥∥∥∥∥∥∥

2

. (12)

Minimizing the loss function (12) with respect to X is equivalent to minimizing a weighted
least–squares loss function with weighting matrix Σ−1 when Σ has the trivial form

Σ = σ2I4m×4m.

Under the gaussian assumption, the estimate obtained via this minimization corresponds to
determining an MLE forX given the entire data set of vector–measurements {y[1], · · · ,y[m]}.
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In order to utilize the entire data set of vector–measurements, we wish to find the MLE
estimate for X = (ST , b)T given the entire data set. We have shown that this estimate
minimizes the complete–data least–squares loss function ¯̀(X) given by Equation (12) which,
in turn, is the same as minimizing the average loss function (11). Focussing, then, on the
average loss function (11) we now proceed to show that we can further simplify the loss
function to be minimized.

Define the average vector–measurement ȳ ∈ R4 by

ȳ = 〈y[k]〉m =
1

m

m∑
k=1

y[k] . (13)

Noting that

2 `k(X) = ‖y[k]− h(X)‖2 = ‖y[k]‖2 − 2 〈y[k],h(X)〉+ ‖h(X)‖2

we can expand the average loss function (11) as

2 ¯̀(X) = 2 〈`k(X)〉m
=

〈
‖y[k]‖2

〉
m
− 2 〈ȳ,h(X)〉+ ‖h(X)‖2

= ‖ȳ‖2 − 2 〈ȳ,h(S)〉+ ‖h(X)‖2 +
(〈
‖y[k]‖2

〉
m
− ‖ȳ‖2

)
= ‖ȳ − h(X)‖2 +

(〈
‖y[k]‖2

〉
m
− ‖ȳ‖2

)
= 2 `(X) + g ,

where

`(X) =
1

2
‖ȳ − h(X)‖2 (14)

and
g =

(〈
‖y[k]‖2

〉
m
− ‖ȳ‖2

)
.

Finally note that because g is independent of X, minimizing `(X) with respect to X is
entirely equivalent to minimizing ¯̀(X) (and hence to minimizing the complete–data loss
function (12)). Thus the problem of finding a least–squares solution to the complete–data
loss function is equivalent to finding the minimum of the loss function `(X) given in (14).

Let the average noise vector ν̄ ∈ R4 be defined by

ν̄ = 〈ν[k]〉m =
1

m

m∑
k=1

ν[k] . (15)

Because of the iid assumption on the measurement noises ν[k] ∼ N(0,Σ) = N(0, σ2I4×4), we
have that the covariance matrix of ν̄ is given by1

Σ = E
{
ν̄ν̄T

}
=

1

m2

m∑
k=1

E
{
ν[k]νT [k]

}
=

1

m
Σ =

σ2

m
I4×4 . (16)

1If you haven’t had a probability course, just accept this fact. If you have had a probability course but
you cannot easily prove this step, then there is a serious deficiency in your education.
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Given the definitions (13) and (15) and the sequence of single vector–measurement equa-
tions (6) we have that

ȳ = h(X) + ν̄ (17)

where ν̄ ∼ N(0,Σ) = N(0, σ
2

m
I4×4). The estimate of X obtained from minimizing the loss

function (14) is equivalent to obtaining an MLE for (17) as it is readily shown that (14) is
also given by

`(X) =
σ2

2m
‖ȳ − h(X)‖2

Σ−1 . (18)

Generalized Gradient Descent Algorithms. As derived in Lecture Supplement 2, the
Generalized Gradient Descent Algorithm (GDA) for minimizing the loss function (14) is
given by

X̂j+1 = X̂j + αkQ(X̂j) HT (X̂j)
(
ȳ − h(X̂j)

)
. (19)

where the estimate at iteration j of the algorithm is X̂j = (ŜTj , b̂j)
T and

h(X̂j) = R(Ŝj) + e b̂j

where R(Ŝj) is computed using Equations (1) and (7).

The Jacobian matrix H(X) ∈ R4×4 is determined from Equation (3) to be

H(X) =
∂h(X)

∂X
=
(
∂R(S)
∂S

∂e b
∂b

)

=

r
T
1 (S)

... e
rT4 (S)

 =


rT1 (S) 1
rT2 (S) 1
rT3 (S) 1
rT4 (S) 1

 (20)

where r` (S) is given by Equation (2).

The (standard) gradient descent algorithm is based on the simple choice Q(X) ≡ I in
(19), yielding

Gradient Descent: X̂j+1 = X̂j + αk HT (X̂j)
(
ȳ − h(X̂j)

)
. (21)

The proper choice of a step–size parameter in the gradient descent algorithm is critical for
good performance. Generally one expects this algorithm to have slow convergence.

The Gauss–Newton algorithm is based on the choice

Q(X) =
(
HT (X)H(X)

)−1
.

This results in
X̂j+1 = X̂j + αk H+(X̂j)

(
ȳ − h(X̂j)

)
. (22)
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Note that for our problem H(X) is a square matrix, so that under the assumption that
h(X) is one–to–one it is invertible.2 Thus in our special case where H(X) just happens to
be square, the Gauss–Newton algorithm corresponds to the choice

Q(X) = H−1(X)H−T (X) .

The use of this choice in (19) yields

Gauss–Newton: X̂j+1 = X̂j + αk H−1(X̂j)
(
ȳ − h(X̂j)

)
, (23)

as expected because H+(X̂j) = H−1(X̂j) when H(X̂j) is square and full rank.

The Gauss–Newton algorithm is less sensitive to the choice of the step–size parameter
than the gradient descent method. Indeed, quite often good performance is obtained with the
Gauss–Newton choice of αk = 1. Note, however, that the computational difference between
the simple gradient descent method and the higher–performing Gauss–Newton method is
significant.

Note that at any point X = X̂ for which h(X) is differentiable we have that

dȳ =
∂h(X̂)

∂X
dX = H(X̂) dX

which corresponds to the linear approximation

∆ȳ = H(X̂) ∆X .

Assuming the invertibility of H(S), this yields

∆X = H−1(X̂)∆ȳ (24)

which corresponds to the Gauss–Newton update (23) if we make the identifications

αk = 1 , X̂ = X̂j , ∆ȳ = ȳ − h(X̂j) , ∆X = X̂j+1 − X̂j .

This is as expected because the Gauss–Newton algorithm with step–size αk = 1 is equivalent
to reiteratively linearizing h and solving the resulting least–squares problem.3

2Of course this will not be true if we have more than four satellites in the receiver line-of-sight. For
example, if we had range measurements, y5[k], to a fifth satellite then H(X) would be 5 × 4 and hence
noninvertible. Having additional satellite measurements improves the accuracy of the estimates, but at the
expense of having to compute the more general pseudoinverse of H(X).

3The least–squares solutions involves the pseudoinverse of the Jacobian matrix H. However in our case
of a full–rank square matrix the Jacobian is invertible, H+ = H−1.
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Gauss–Newton Parameter Estimate Error Variance. We can determine accurate
estimates of the parameter error covariance matrix for the Gauss–Newton algorithm by
exploiting the fact that the Gauss–Newton algorithm is equivalent to reiteratively linearizing
the nonlinear inverse problem and then solving the resulting approximate linear inverse
problem.

Let X0 denote the optimal MLE value of X which minimizes the loss function (14) and

assume that the estimation algorithm (19) is convergent to X0, X̂∞ , limj→∞ X̂j = X0. Let
Xtrue = (STtrue, b true)

T denote the true, unknown, receiver location and clock bias and in the
sequel let

∆X = Xtrue −X0 = Xtrue − X̂∞
be the error between the true, unknown value Xtrue and the MLE X0 = X̂∞. Also define
X̂∞+1 , limj→∞ X̂j+1 and note that under the assumption of convergence of the Gauss–

Newton algorithm to the MLE solution X0 we must have that X̂∞+1 = X̂∞.

Now consider the linearization of (13) about the learned value X̂∞ = X0,4

∆ȳ = H(X0) ∆X + ν̄ ,

where ∆ȳ = ȳ − h(X0). It is assumed that ∆X = Xtrue −X0 = Xtrue − X̂∞ is small so that
the linearization is a very good approximation to (13). As discussed in lecture, under the
one–to–one (full column rank) assumption the MLE estimate of ∆X is determined as

∆̂X = H+(X0)∆ȳ = ∆X + H+(X0)ν̄ ,

where ∆̂X = X̂true −X0 = X̂true − X̂∞ and

H+(X0) =
(
HT (X0)H(X0)

)−1
HT (X0)

is a left inverse of H(X0). In the special case considered here H(X0) is square, and hence
invertible, so that H(X0)+ = H(X0)−1. Thus our least squares estimate of ∆X = Xtrue−X0

obeys
∆̂X = ∆X + H−1(X0)ν̄ . (25)

As noted above, because the MLE solution X0 is found from running the Gauss–Newton
algorithm until convergence it must be true that5

X0 = X̂∞ = X̂∞+1 .

4The linearization of (13) at the point X0 corresponds to performing a Taylor series expansion of the
nonlinear term h(X) about the point X0,

h(X) = h(X0 + ∆X) = h(X̂0) + H(X0) ∆X + h.o.t. ,

and then ignoring the terms higher than linear order.
5That is, at convergence (i.e., at k = ∞) running the algorithm for one more step does not change the

answer.
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Furthermore, from the interpretation of the Gauss–Newton algorithm as reiteratively solving
the linearized least–squares problem it must be the case that running the Gauss–Newton
algorithm for one more iteration corresponds to the update step

X̂∞+1 = X̂∞ + α∞∆̂X

with α∞ > 0. Therefore it must be the case under the convergence assumption that

∆̂X = X̂true −X0 = 0

so that X̂true = X0 = X̂∞. Therefore from (25) and the fact that ∆X = Xtrue − X0 we
obtain the important result that at convergence of the Gauss–Newton algorithm we have6

X̂∞ = X0 = Xtrue + H−1(X0)ν̄ . (26)

From Equation (26) we obtain the result that X̂∞ is unbiased, E
{
X̂∞

}
= Xtrue and that

the parameter error covariance matrix is given by

E

{(
X̂∞ −Xtrue

)(
X̂∞ −Xtrue

)T}
=
σ2

m
H−1(X̂∞)H−T (X̂∞) =

σ2

m

(
HT (X̂∞)H(X̂∞)

)−1

.

Note that this precisely the result we expect from the MLE for the linear model which we
have shown in lecture results in the parameter error covariance matrix,(

HT (X̂∞)Σ−1H(X̂∞)
)−1

where Σ = σ2

m
I4×4. The square–roots of the diagonal elements of the parameter error co-

variance matrix give the error standard–deviations for the location and clock bias estimates
obtained using the Gauss–Newton method.

Comments on Step-Size Determination. The Generalized Gradient Descent algorithm
is of the form

X̂j+1 = X̂j + ∆X̂j

where
∆X̂j = −αj Q(X̂j)∇X`(X̂j)

corresponds to a step in the opposite direction to the generalized gradient Q(X̂j)∇X`(X̂j)
7

and the size of this step is controlled by the value of the step–size parameter αj > 0.

6Assuming that the error ∆X = Xtrue −X0 = Xtrue − X̂∞ is small so that the linear approximation is
good.

7The fact that Q(X̂j) is positive definite ensures that the angle between the gradient ∇X`(X̂j) and the
generalized gradient Q(X̂j)∇X`(X̂j) is less than 90o so that a movement along the generalized gradient
direction always has a component along the gradient direction.
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The choice of step size can be very critical for ensuring convergence of a generalized
gradient descent algorithm and is a major topic of concern in advanced textbooks on opti-
mization theory. If the simple choice of a constant value of αj is used, generally the smaller
the value of αj the more likely it is that the algorithm will converge but also that the rate
of convergence will be slow. Fortunately, the Newton and Gauss–Newton methods tend to
be quite stable and the choice of αj = 1 or α equal to a constant value slightly less than one
often works well.

More generally, the step size choice can be chosen dynamically. Note that we need αj → 0
more slowly than the generalized gradient goes to zero in order to avoid turning off the update
step before we have learned the unknown parameter vector X. In principle we require that
α∞ > 0 but practically we can have α∞ = 0 provided that the generalized gradient converges
to zero before the step–size parameter has converged to zero. A simple dynamic choice for
αj is given by

αj = α0β
j , β = 0, 1, 2, · · ·

for α0 > 0 and 0 < β < 1. More sophisticated ways to dynamically adjust the step–size are
discussed in the textbooks on optimization theory.

A simple but computationally expensive way to enforce convergence8 is to choose a step–
size that guarantees that the loss function `(X̂j) is decreased as follows:

Begin

Choose values for α0 > 0 and 1 > β > 0

Set `j = `(X̂j) and k = 0

Loop Until `j+1 < `j

α = α0 β
k

X̂j+1 = X̂j − αQ(X̂j)∇X`(X̂j)

`j+1 = `(X̂j+1)

k ← k + 1

End Loop

End

This will ensure that `(X̂j+1) < `(X̂j) but at the potential cost of several expensive
update and loss function evaluations at each iteration step j of the generalized gradient
descent algorithm.

8But perhaps at the expense of the speed of convergence.


